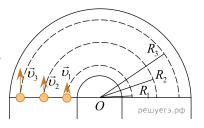
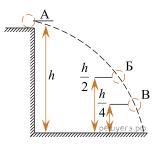

При выполнении заданий с кратким ответом впишите в поле для ответа цифру, которая соответствует номеру правильного ответа, или число, слово, последовательность букв (слов) или цифр. Ответ следует записывать без пробелов и каких-либо дополнительных символов. Дробную часть отделяйте от целой десятичной запятой. Единицы измерений писать не нужно. Ответ с погрешностью вида $(1,4\pm0,2)$ Н записывайте следующим образом: 1,40,2.

Если вариант задан учителем, вы можете вписать или загрузить в систему ответы к заданиям с развернутым ответом. Учитель увидит результаты выполнения заданий с кратким ответом и сможет оценить загруженные ответы к заданиям с развернутым ответом. Выставленные учителем баллы отобразятся в вашей статистике.

1. Если предмет находится перед плоским зеркалом на расстоянии 10 см от него, то расстояние между предметом и его изображением в зеркале равно:


- 1) 5.0 см
- 2) 10 см
- 3) 20 см
- 4) 30 см
- 5) 40 cm

2. Частица движется вдоль оси Ox. На рисунке изображён график зависимости координаты x частицы от времени t. В момент времени t=4 с проекция скорости v_x частицы на ось Ox равна:



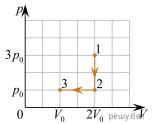
- 1) 2 m/c;
- 2) 1 m/c;
- 3) 0.5 m/c;
- 4) 0.25 m/c;
- 5) -0.5 m/c.

3. Три мотогонщика равномерно движутся по закруглённому участку гоночной трассы, совершая поворот на 180° (см. рис.). Модули их скоростей движения $\upsilon_1=10$ м/с, $\upsilon_2=15$ м/с, $\upsilon_3=20$ м/с, а радиусы кривизны траекторий $R_1=5,0$ м, $R_2=7,5$ м, $R_3=9,0$ м. Промежутки времени $\Delta t_1, \ \Delta t_2, \ \Delta t_3, \$ 3а которые мотогонщики проедут поворот, связаны соотношением:

- 1) $\Delta t_1 = \Delta t_2 = \Delta t_3$ 2) $\Delta t_1 > \Delta t_2 > \Delta t_3$ 3) $\Delta t_1 < \Delta t_2 < \Delta t_3$ 4) $\Delta t_1 > \Delta t_2 = \Delta t_3$ 5) $\Delta t_1 = \Delta t_2 > \Delta t_3$
- **4.** Тело, брошенное вертикально вниз с некоторой высоты, за последние три секунды движения прошло путь s=135 м. Если модуль начальной скорости тела $\upsilon_0=10,0$ $\frac{\rm M}{\rm C}$, то промежуток времени Δt , в течение которого тело падало, равен:
 - 1) 3,00 c
- 2) 4,00 c
- 3) 4,50 c
- 4) 5,00 c
- 5) 5,50 c
- 5. С некоторой высоты h в горизонтальном направлении бросили камень, траектория полёта которого показана штриховой линией (см. рис). Если в точке B полная механическая энергия камня W=20 Дж, то в точке B она равна:

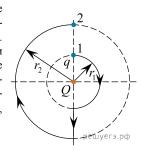
- 1) 0 Дж
- 2) 20 Дж
- 3) 30 Дж
- 4) 40 Дж
- 5) 60 Дж

6. В двух вертикальных сообщающихся сосудах находится ртуть (ρ_1 = 13,6 г/см³). Поверх ртути в один сосуд налили слой воды (ρ_2 = 1,00 г/см³) высотой H = 49 см. Разность Δh уровней ртути в сосудах равна:

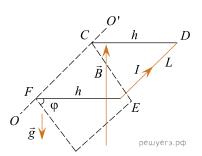

7. В герметично закрытом сосуде находится идеальный газ, давление которого $p=1,0\cdot 10^5$ Па. Если средняя квадратичная скорость поступательного движения молекул газа $< v_{\kappa g} > = 500$ м/с,то плотность ρ газа равна:

8. Если при изохорном нагревании идеального газа, количество вещества которого постоянно, давление газа увеличилось на $\Delta p=120~\mathrm{k\Pi a}$, а абсолютная температура возросла в $k=2{,}00$ раза, то давление p_2 газа в конечном состоянии равно:

- **9.** С идеальным газом, количество вещества которого постоянно, проводят изобарный процесс. Если объём газа увеличивается, то:
 - 1) к газу подводят теплоту, температура газа увеличивается
 - 2) теплота не подводится к газу и не отводится от него, температура газа уменьшается
 - 3) теплота не подводится к газу и не отводится от него, температура газа постоянна
 - 4) теплота не подводится к газу и не отводится от него, температура газа увеличивается
 - 5) от газа отводят теплоту, температура газа уменьшается
 - 10. На рисунке приведено условное обозначение:

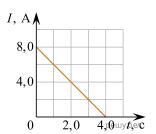


- 1) реостата 2) вольтметра 3) гальванического элемента 4) конденсатора 5) электрического звонка
- 11. С одноатомным идеальным газом, количество вещества которого постоянно, провели процессы $1 \to 2$ и $2 \to 3$ (см. рис.). Если работа, совершённая внешними силами над газом в процессе $2 \to 3$, составляет A' = 8,0 Дж, то суммарное количество теплоты $|\mathcal{Q}|$, отведённое от газа в процессах $1 \to 2$ и $2 \to 3$, равно ... Дж.



- **12.** Тело движется вдоль оси Ox под действием силы \vec{F} . Кинематический закон движения тела имеет вид: $x(t) = A + Bt + Ct^2$, где A = 5.0 м, B = 2.0 м/с , C = 2.0 м/с². Если масса тела m = 2.0 кг, то в момент времен t = 2.0 с мгновенная мощность P силы равна ... **В**т.
- **13.** При выполнении циркового трюка мотоциклист движется по вертикальной цилиндрической стенке с минимально возможной скоростью, модуль которой $\upsilon_{\min} = 12$ м/с. Если коэффициент трения $\mu = 0,60$, то радиуса R окружности, по которой движется мотоциклист равен ... дм. Ответ округлите до целых.
- **14.** На невесомой нерастяжимой нити длиной l=98 см висит небольшой шар массой M=38,6 г. Пуля массой m=1,4 г, летящая горизонтально со скоростью \vec{v}_0 , попадает в шар и застревает в нем. Если скорость пули была направлена вдоль диаметра шара, то шар совершит полный оборот по окружности в вертикальной плоскости при минимальном значении скорости v_0 пули, равном ...м/с.

- **15.** При температуре $t_1=27\,^{\circ}\mathrm{C}$ средняя квадратичная скорость поступательного движения молекул идеального газа $<v_{\mathrm{KB1}}>=354\,$ м/с. При температуре $t_2=227\,^{\circ}\mathrm{C}$ молекулы этого газа имеют среднюю квадратичную скорость $<v_{\mathrm{KB2}}>$, равную ... м/с. Ответ округлите до целого числа.
- **16.** Небольшой пузырёк воздуха медленно поднимается вверх со дна водоёма. На глубине $h_1=80$ м температура воды ($\rho=1,0\frac{\Gamma}{{\rm cM}^3}$) $t_1=7,0^{\circ}{\rm C}$, а объём пузырька V_1 . Если атмосферное давление $p_0=1,0\cdot 10^5$ Па, то на глубине $h_2=2,0$ м, где температура воды $t_2=17^{\circ}{\rm C}$, на пузырёк действует выталкивающая сила, модуль которой $F_2=3,5$ мН, то объем пузырька V_1 был равен ... мм 3 .
- **17.** При изотермическом расширении одного моля идеального одноатомного газа, сила давления газа совершила работу $A_1=1,60~\rm кДж$. При последующем изобарном нагревании газу сообщили в два раза большее количество теплоты, чем при изотермическом расширении. Если начальная температура газа $T_1=326~\rm K$, то его конечная температура T_2 равна ... K.
- **18.** Источник радиоактивного излучения содержит $m_0=1,2$ г изотопа радия $^{226}_{88}\mathrm{Ra}$, период полураспада которого $T_{1/2}=1,6$ тыс. лет. Через промежуток времени $\Delta t=6,4$ тыс. лет масса m нераспавшегося изотопа радия составит ... мг.
- 19. На рисунке изображены концентрические окружности радиусами r_1 и r_2 , в центре которых находится неподвижный точечный заряд Q=32 нКл. Точечный заряд q=4,5 нКл перемещали из точки 1 в точку 2 по траектории, показанной на рисунке сплошной жирной линией. Если радиусы окружностей $r_1=3,5$ см и $r_2=5,9$ см, то работа, совершённая электростатическим полем заряда Q, равна ... мкДж.



- **20.** Троллейбус массой m=11 т движется по горизонтальному участку дороги прямолинейно и равномерно со скоростью, модуль которой $\upsilon=36~\frac{{\rm KM}}{{\rm Y}}$. Отношение модулей силы сопротивления движению и силы тяжести, действующих на троллейбус, $\frac{F}{mg}=0.011$. Если напряжение на двигателе троллейбуса $U=550~{\rm B}$, а коэффициент полезного действия двигателя $\eta=81$ %, то сила тока I в двигателе равна ... A.
- **21.** В идеальном LC-контуре происходят свободные электромагнитные колебания. Полная энергия контура W=64 мкДж. В момент времени, когда сила тока в катушке I=10 мА, заряд конденсатора q=2.1 мкКл. Если индуктивность катушки L=20 мГн, то емкость C конденсатора равна ... нФ.
- **22.** Две лёгкие спицы одинаковой длины h и стержень массой m=5,0 г и длиной L=20 см образуют П-образный (прямоугольный) проводник CDEF, который может свободно вращаться вокруг горизонтальной оси OO'. Проводник помещён в однородное магнитное поле, линии индукции которого направлены вертикально вверх (см. рис.). В проводнике протекает постоянный ток I=12 А. Проводник отклонили так, что его плоскость стала горизонтальной, а затем

отпустили без начальной скорости. Если мгновенная скорость стержня стала равной нулю в тот момент, когда угол между плоскостью проводника $\phi = 60^{\circ}$, то модуль индукции магнитного поля равен ... мТл.

- **23.** На дифракционную решётку нормально падает белый свет. Если для излучения с длиной волны $\lambda_1=546$ нм дифракционный максимум четвертого порядка ($m_1=4$) наблюдается под углом θ , то максимум пятого порядка ($m_2=5$) под таким же углом θ будет наблюдаться для излучения с длиной волны λ_2 , равной? Ответ приведите в нанометрах.
- **24.** Два одинаковых положительных точечных заряда расположены в вакууме в двух вершинах равностороннего треугольника. Если потенциал электростатического поля в третьей вершине $\phi=30~\mathrm{B}$, то модуль силы F электростатического взаимодействия между зарядами равен ... нН.
- **25.** Сила тока в резисторе сопротивлением R=16 Ом зависит от времени t по закону I(t)=B+Ct, где B=6,0 A, C=-0,50 $\frac{\rm A}{\rm c}$. В момент времени $t_1=10$ с тепловая мощность P, выделяемая в резисторе, равна ... Вт.
- **26.** Резистор сопротивлением R=10 Ом подключён к источнику тока с ЭДС $\mathcal{E}=13$ В и внутренним сопротивлением r=3,0 Ом. Работа электрического тока A на внешнем участке электрической цепи, совершённая за промежуток времени $\Delta t=9,0$ с, равна ... Дж.
- **27.** Электроскутер массой m=130 кг (вместе с водителем) поднимается по дороге с углом наклона к горизонту $\alpha=30^\circ$ с постоянной скоростью $\vec{\upsilon}$. Сила сопротивления движению электроскутера прямо пропорциональна его скорости: $\vec{F_c}=-\beta\vec{\upsilon}$, где $\beta=1,25$ $\frac{\mathbf{H}\cdot\mathbf{c}}{\mathbf{M}}$. Напряжение на двигателе электроскутера U=480 В, сила тока в обмотке двигателя I=40 А. Если коэффициент полезного действия двигателя $\eta=85\%$, то модуль скорости υ движения электроскутера равен ... $\frac{\mathbf{M}}{\mathbf{c}}$.
- **28.** На рисунке представлен график зависимости силы тока I в катушке индуктивностью L=7,0 Гн от времени t. ЭДС $\mathcal{E}_{\mathbf{c}}$ самоиндукции, возникающая в этой катушке, равна ... В.

29. Идеальный колебательный контур состоит из конденсатора электроёмкостью C=150 мкФ и катушки индуктивностью L=1,03 Гн. В начальный момент времени ключ K разомкнут, а конденсатор заряжен (см. рис.). После замыкания ключа заряд конденсатора уменьшится в два раза через минимальный промежуток времени Δt , равный ... мс.

30. Луч света, падающий на тонкую рассеивающую линзу с фокусным расстоянием |F|=30 см, пересекает главную оптическую ось линзы под углом α , а продолжение преломлённого луча пересекает эту ось под углом β . Если отношение $\frac{\mathrm{tg}\,\beta}{\mathrm{tg}\,\alpha}=\frac{5}{2},$ то точка пересечения продолжения преломлённого луча с главной оптической осью находится на расстоянии f от оптического центра линзы, равном ... см.